What are the effects of agricultural management on soil organic carbon (SOC) stocks?
نویسندگان
چکیده
Background: Changes in soil organic carbon (SOC) stocks significantly influence the atmospheric C concentration. Agricultural management practices that increase SOC stocks thus may have profound effects on climate mitigation. Additional benefits include higher soil fertility since increased SOC stocks improve the physical and biological properties of the soil. Intensification of agriculture and land-use change from grasslands to croplands are generally known to deplete SOC stocks. The depletion is exacerbated through agricultural practices with low return of organic material and various mechanisms, such as oxidation/mineralization, leaching and erosion. However, a systematic review comparing the efficacy of different agricultural management practices to increase SOC stocks has not yet been produced. Since there are diverging views on this matter, a systematic review would be timely for framing policies not only nationally in Sweden, but also internationally, for promoting long-term sustainable management of soils and mitigating climate change. Methods: The systematic review will examine how changes in SOC are affected by a range of soil-management practices relating to tillage management, addition of crop residues, manure or other organic “wastes”, and different crop rotation schemes. Within the warm temperate and the snow climate zones, agricultural management systems in which wheat, barley, rye, oats, silage maize or oilseed rape can grow in the crop rotation will be selected. The review will exclusively focus on studies conducted over at least 10 years. Searches will be made in 15 publication databases as well as in specialist databases. Articles found will be screened using inclusion/exclusion criteria at title, abstract and full-text levels, and screening consistency will be evaluated using Kappa tests. Data from articles that remain after critical appraisal will be extracted using a predefined spreadsheet. Subgroup analyses will be undertaken to elucidate statistical relationships that are specific to particular type of management interventions. Meta-regression within subgroups will be performed as well as sensitivity analysis to investigate the impact of removing groups of studies with low or unclear quality.
منابع مشابه
Effects of Land Use and Land Cover changes on Soil Organic Carbon and Total Nitrogen Stocks in the Olesharo Catchment, Narok County, Kenya
Land Use and Land Cover Change (LULCC) is the most prominent cause of Soil Organic Carbon (SOC) variability in any landscape. Kenyan Arid and Semi-Arid Lands (ASALs) have been facing extensive land use/ cover changes in the last three decades prompting a review on the impacts it has on soil quality and consequently on land degradation. This study was carried out in 2016 in Olesharo Catchment, N...
متن کاملThe Effect of Land use and Soil Erosion on Soil Organic Carbon and Nitrogen Stock
Soil organic carbon (SOC) is a principal component in soil quality assessment. Knowledge of SOC and total nitrogen (TN) stocks are important keys to understand the role of SOC in the global carbon cycle and, as a result, in the mitigation of global greenhouse effects. SOC and TN stocks are functions of the SOC concentration and the bulk density of the soil that are prone to changes, influe...
متن کاملEffect of a long-term cultivation and crop rotations on organic carbon in loess derived soils of Golestan Province, Northern Iran
The effects of 34 years cultivation on organic carbon content of the loess derived soils were studied in Golestan province, northern Iran. Soil organic carbon (SOC) showed significant decrease in most of cases. The minimum and maximum SOC decreases were 4 and 51.14 Mg C ha-1/30 cm for 34 years. In a few cases there was an increase in SOC up to 16.93 Mg C ha-1/30 cm over the period of 34 years i...
متن کاملSoil Organic Carbon Stocks and Nitrogen Content Comparison in Different Slope Positions in Native Grasslands and Adjacent Cultivated Soils (Case Study: Kermanshah Mountain Rangelands, Iran)
Global warming has been largely driven by increasing atmospheric GHG (Green House Gasses), particularly carbon dioxide caused by fossil fuels burning. The current trend can not be stopped except by reducing fossil fuel consumption or storing organic carbon in soil or earthchr('39')s biological systems such as forests, rangelands and agricultural systems. This study was conducted to determine th...
متن کاملThe Impacts of Land Use Change in Soil Carbon and Nitrogen Stocks (Case Study Shahmirzad Lands, Semnan Province, Iran)
Soil carbon and nitrogen contents play an important role in sustaining soil physical and chemical quality and help to have healthy environments. The continues conversion of rangelands to arable lands has the potential to change carbon and nitrogen sequestration. In this study to evaluate the effects of land use change on soil organic carbon and nitrogen stock, forty samples collected from north...
متن کامل